Critical review report of the study: "Life cycle assessment of ammonia fuel"

By Miguel Brandão (chair), Romain Sachi, Rob Stevens

19th December 2024

1. Introduction

The present document reports the review made of a life cycle assessment (LCA) study of ammonia fuels. The LCA study in question (Schmidt et al., 2024) was performed by Jannick Schmidt, Karen-Emilie Trier Kreutzfeldt, Freja Konradsen, Simon Vemmelund, and Mathilde Nilsson, from 2.-0 LCA consultants, and commissioned by Mærsk, as part of a broader project aimed at comprehensively assessing the potential environmental impacts of using ammonia as a shipping fuel in comparison with very low sulphur fuel oil (VLSFO), following the Stepwise LCIA endpoint method. This is the review of the revised version, sent on 20th November.

The LCA study reviewed consists of the first iteration. Furthermore, results are estimated for the distribution of 1 MJ of ammonia fuel and compared with a more traditional way of producing shipping fuel (i.e., VLSFO).

The study represents a comparative assertion meant to be disclosed to the public, which, according to ISO 14044 (2006b), requires a third-party critical review panel.

2. Scope of the review

This review characterises the study against a fixed set of criteria commonly used in LCA reviews and can be found in the ISO standard 14071 (ISO, 2014). These characteristics cover each of the four phases of LCA, and this review is structured around those: 1) goal & scope definition, 2) inventory analysis, 3) impact assessment and 4) interpretation.

This critical review ensures that the methods used to carry out the LCA are consistent with the ISO standards - 14040 (ISO, 2006a), 14044 (ISO, 2006), as well as technical specification (TS) 14071 (ISO, 2014) – and are scientifically and technically valid. It also ensures that the data used are appropriate and consistent with the goal and scope of the study. Finally, this review ensures the LCA report is transparent and consistent. All these features are required by TS14071 (ISO, 2014) and represent the checks and balances that ensure the quality of the study.

This review is performed based on expert reviews by three experts whose expertise is complementary to the applied methods and sector to which the methods are applied. It has been performed at the end of the study, but changes are expected to occur after the production of this report, which will be re-assessed as follows (5-stage procedure) for each iteration:

- 1. Reviewers read and comments on the report
- 2. Study authors went through reviewer comments one by one and made a revised report and an itemized reply
- 3. Reviewers read the authors' itemized reply and gave remaining comments
- 4. Authors went through the remaining issues the reviewers identified and made a reply
- 5. Reviewers read the author's revised itemized reply and made the final review statement (i.e. this statement).

This review report corresponds to step 5 above and pertains to the final iteration. It excludes a detailed assessment of the life cycle inventory (LCI) model and of the individual data sets, but, as required by TS14071 (ISO, 2014), it covers all aspects of the LCA's definition of scope and life cycle inventory (LCI), including assumptions, data appropriateness and reasonability, calculation procedures and calculated LCI results. Furthermore, life cycle impact assessment (LCIA) results and interpretations made of those also subject to our review.

It is outside the scope of this review to address the goals chosen for the LCA study in question, as it is impossible to verify or validate them. The responsibility for those, as well as how the LCA results are used, lie with the commissioner of the LCA study. Specific comments are provided in Table 1.

3. Review of LCA study of ammonia fuels

3.1 Goal and scope definition

LCA practice is standardised by the International Organization for Standardisation (ISO) in ISO14040 (ISO, 2006a) and ISO14044 (ISO, 2006b). These standards include the terminology and requirements for LCA studies, such as the process for conducting LCA studies, methods, data, evaluation, documentation, etc. ISO compliance ensures that the study adheres to those internationally-agreed rules and, thus, credibility and bias-freedom. However, it may not necessarily ensure scientific soundness and robustness.

This section of the study explains this particular stage and where it falls within the four phases of an LCA. It also includes a description of the critical review, the purpose of the study, contrasting modelling approaches, functional unit, system boundaries, geographical scope, temporal scope, background databases, cut-off criteria, data sources and quality, life cycle impact assessment methods (including the adopted environmental impact categories), and time-dependent emission factors.

The following has been verified:

- The study under review claims to be compliant with the above standards. This is indeed attested. However, claiming compliance with other methods, such as RED II, must be made clear, particularly where inconsistencies exist.
- It is specified that the study will go through a critical review.
- The study's goals and intended application and audience are formulated.
- Data collection follows concerns of consistency.
- The temporal scope is specified.
- The geographical scope is delimited to the world, with groupings of countries and regions.
- The functional unit is specified and appropriate, but the proportion of VLSFO in ammonia for electrolysis remains a question. It will be used for comparison purposes.
- It is clearly stated that the LCI model follows a consequential approach, and an explanation is given. In addition, an attributional approach to the carbon footprint is followed and explained.
- It is clearly stated that the LCIA method used is Stepwise 2006, and an explanation of the method and updates on nature occupancy and global warming potential are given. A comprehensive set (9) of environmental impact categories was adopted and identified, and the few (5) that were left out were justified based on the lack of associated elementary flows in EXIOBASE.
- The treatment of biogenic carbon and methane is not explained nor justified properly. It is set to 0 to ensure compliance with RED II.
- System boundaries delimitation: cut-off identified for both attributional and consequential models, although the two are inconsistent, which limits the comparison of models. A distinction is made between the foreground and background systems, and

the use of EXIOBASE ecoinvent for the background data, and a general description of that database. iLUC is integrated with EXIOBASE. It is not explained why ecoinvent is used for the attributional model and EXIOBASE for the consequential, as any differences could arise instead of differences between the two modelling approaches.

3.2 Life cycle inventory (LCI): framework and general and specific activities

This section describes the data and modelling in the reviewed LCA study. The consequential system model version used ensures consistency with the consequential approach, particularly how by-products and determining products are dealt with to avoid allocation.

Indirect land use changes (iLUC) – which are often neglected in LCA – are modelled consistently with the rest of the LCA model.

Other general activities related to production, such as electricity and natural gas, process steam, transport, and concrete, are described appropriately. Specific activities related to ammonia, hydrogen, nitrogen and VLSFO production are also described. The involved activities are described, and inventory summaries are shown.

3.3. Life cycle impact assessment (LCIA)

A very competent LCIA, including weighting via monetarization as per the Stepwise method, is applied, and its results are shown. This includes a detailed contribution analysis for 9 midpoint impact categories in terms of both dominant emissions and hotspots.

It is shown that the ammonia fuel produced via electrolysis is more environmentally efficient in some categories, like global warming, but not all. Conversely, desulphurisation appears to be the worst.

3.4. Interpretation

Relevant parameters are changed in a sensitivity analysis, which includes sensitivity, completeness, and consistency checks. Furthermore, limitations are identified. The results and reasons for them are discussed. The extrapolated conclusions are robust and rest on the analysis reported that preceded them.

4. Conclusions

The review of the study on ammonia fuels revealed a competent analysis that underwent the rigorous application of the aforementioned ISO standards. Thus, it can be inferred that the study reviewed is an ISO-compliant, consistent and scientific application of the LCA methodology. We therefore conclude that the study made so far is of high quality, and can support environmental decision making.

References

Schmidt J, Trier Kreutzfeldt KE, Konradsen F, Vemmelund S and Nilsson M (2024) 2.-0 LCA consultants, Aalborg, 20th November 2024. Final version. 2.-0 LCA consultants, Aalborg, Denmark.

ISO 14040 (2006) Environmental management – Life cycle assessment – Principles and framework. International Standard Organization (ISO), Geneve.

ISO 14044 (2006) Environmental management – Life cycle assessment – Requirements and guidelines. International Standard Organization (ISO), Geneve.

ISO 14071 (2014) Environmental management – Life cycle assessment – Critical review processes and reviewer competencies: Additional requirements and guidelines to ISO 14044:2006. International Standard Organization (ISO), Geneve.

Critical review report of the study: "Life cycle assessment of ammonia fuel"

By Miguel Brandão (chair), Romain Sachi, Rob Stevens

15th August 2024

1. Introduction

The present document reports the review made of a life cycle assessment (LCA) study of ammonia fuels. The LCA study in question (Schmidt et al., 2024) was performed by Jannick Schmidt, Karen-Emilie Trier Kreutzfeldt, Freja Konradsen, Simon Vemmelund, and Mathilde Nilsson, from 2.-0 LCA consultants, and commissioned by Mærsk, as part of a broader project aimed at comprehensively assessing the potential environmental impacts of using ammonia as a shipping fuel in comparison with very low sulphur fuel oil (VLSFO), following the Stepwise LCIA endpoint method. This is the revision of the first iteration, sent on 11th July and sent back on 16th August.

The LCA study reviewed consists of the first iteration. Furthermore, results are estimated for the distribution of 1 MJ of ammonia fuel and compared with a more traditional way of producing shipping fuel (i.e., VLSFO).

The study represents a comparative assertion meant to be disclosed to the public, which, according to ISO 14044 (2006b), requires a third-party critical review panel.

2. Scope of the review

This review characterises the study against a fixed set of criteria commonly used in LCA reviews and can be found in the ISO standard 14071 (ISO, 2014). These characteristics cover each of the four phases of LCA, and this review is structured around those: 1) goal & scope definition, 2) inventory analysis, 3) impact assessment and 4) interpretation.

This critical review ensures that the methods used to carry out the LCA are consistent with the ISO standards - 14040 (ISO, 2006a), 14044 (ISO, 2006), as well as technical specification (TS) 14071 (ISO, 2014) – and are scientifically and technically valid. It also ensures that the data used are appropriate and consistent with the goal and scope of the study. Finally, this review ensures the LCA report is transparent and consistent. All these features are required by TS14071 (ISO, 2014) and represent the checks and balances that ensure the quality of the study.

This review is performed based on expert reviews by three experts whose expertise is complementary to the applied methods and sector to which the methods are applied. It has been performed at the end of the study, but changes are expected to occur after the production of this report, which will be re-assessed as follows (5-stage procedure) for each iteration:

- 1. Reviewers read and comments on the report
- 2. Study authors will go through reviewer comments one by one and make a revised report and an itemized reply
- 3. Reviewers read the authors' itemized reply and gives any potential remaining comments
- 4. Authors will go through any remaining issues the reviewer might have and make a revised LCA report and itemized reply
- 5. Reviewers read the author's revised itemized reply and makes the final review statement (applicable only to the final iteration).

This review report corresponds to step 1 above and pertains to the first iteration, which was sent on 11th July 2024. It excludes a detailed assessment of the life cycle inventory (LCI) model and of the individual data sets, but, as required by TS14071 (ISO, 2014), it covers all aspects of the LCA's definition of scope and life cycle inventory (LCI), including assumptions, data

appropriateness and reasonability, calculation procedures and calculated LCI results. Furthermore, life cycle impact assessment (LCIA) results and interpretations made of those also subject to our review.

It is outside the scope of this review to address the goals chosen for the LCA study in question, as it is impossible to verify or validate them. The responsibility for those, as well as how the LCA results are used, lie with the commissioner of the LCA study. Specific comments are provided in Table 1.

3. Review of LCA study of ammonia fuels

3.1 Goal and scope definition

LCA practice is standardised by the International Organization for Standardisation (ISO) in ISO14040 (ISO, 2006a) and ISO14044 (ISO, 2006b). These standards include the terminology and requirements for LCA studies, such as the process for conducting LCA studies, methods, data, evaluation, documentation, etc. ISO compliance ensures that the study adheres to those internationally-agreed rules and, thus, credibility and bias-freedom. However, it may not necessarily ensure scientific soundness and robustness.

This section of the study explains this particular stage and where it falls within the four phases of an LCA. It also includes a description of the critical review, the purpose of the study, contrasting modelling approaches, functional unit, system boundaries, geographical scope, temporal scope, background databases, cut-off criteria, data sources and quality, life cycle impact assessment methods (including the adopted environmental impact categories), and time-dependent emission factors.

The following has been verified:

- The study under review claims to be compliant with the above standards. This is indeed attested. However, claiming compliance with other methods, such as RED II, must be made clear, particularly where inconsistencies exist.
- It is specified that the study will go through a critical review.
- The study's goals and intended application and audience are formulated.
- Data collection follows concerns of consistency.
- The temporal scope is specified.
- The geographical scope is delimited to the world, with groupings of countries and regions.
- The functional unit is specified and appropriate, but the proportion of VLSFO in ammonia for electrolysis remains a question. It will be used for comparison purposes.
- It is clearly stated that the LCI model follows a consequential approach, and an explanation is given. In addition, an attributional approach to the carbon footprint is followed and explained.
- It is clearly stated that the LCIA method used is Stepwise 2006, and an explanation of the method and updates on nature occupancy and global warming potential are given. A comprehensive set (9) of environmental impact categories was adopted and identified, and the few (5) that were left out were justified based on the lack of associated elementary flows in EXIOBASE.
- The treatment of biogenic carbon and methane is not explained nor justified properly.

It is set to 0 to ensure compliance with RED II.

• System boundaries delimitation: cut-off identified for both attributional and consequential models, although the two are inconsistent, which limits the comparison of models. A distinction is made between the foreground and background systems, and the use of EXIOBASE ecoinvent for the background data, and a general description of that database. iLUC is integrated with EXIOBASE. It is not explained why ecoinvent is used for the attributional model and EXIOBASE for the consequential, as any differences could arise instead of differences between the two modelling approaches.

3.2 Life cycle inventory (LCI): framework and general and specific activities

This section describes the data and modelling in the reviewed LCA study. The consequential system model version used ensures consistency with the consequential approach, particularly how by-products and determining products are dealt with to avoid allocation.

Indirect land use changes (iLUC) – which are often neglected in LCA – are modelled consistently with the rest of the LCA model.

Other general activities related to production, such as electricity and natural gas, process steam, transport, and concrete, are described appropriately. Specific activities related to ammonia, hydrogen, nitrogen and VLSFO production are also described. The involved activities are described, and inventory summaries are shown.

3.3. Life cycle impact assessment (LCIA)

A very competent LCIA, including weighting via monetarization as per the Stepwise method, is applied, and its results are shown. This includes a detailed contribution analysis for 9 midpoint impact categories in terms of both dominant emissions and hotspots.

It is shown that the ammonia fuel produced via electrolysis is more environmentally efficient in some categories, like global warming, but not all. Conversely, desulphurisation appears to be the worst.

3.4. Interpretation

Relevant parameters are changed in a sensitivity analysis, which includes sensitivity, completeness, and consistency checks. Furthermore, limitations are identified. The results and reasons for them are discussed. The extrapolated conclusions are robust and rest on the analysis reported that preceded them.

4. Conclusions

The review of the study on ammonia fuels revealed a competent analysis that underwent the rigorous application of the aforementioned ISO standards. Thus, it can be inferred that the study reviewed is an ISO-compliant, consistent and scientific application of the LCA methodology. We therefore conclude that the study made so far is of high quality, and can support environmental decision making.

References

Schmidt J, Trier Kreutzfeldt KE, Konradsen F, Vemmelund S and Nilsson M (2024) 2.-0 LCA consultants, Aalborg, 11th of July 2024. First iteration. 2.-0 LCA consultants, Aalborg, Denmark.

ISO 14040 (2006) Environmental management – Life cycle assessment – Principles and framework. International Standard Organization (ISO), Geneve.

ISO 14044 (2006) Environmental management – Life cycle assessment – Requirements and guidelines. International Standard Organization (ISO), Geneve.

ISO 14071 (2014) Environmental management – Life cycle assessment – Critical review processes and reviewer competencies: Additional requirements and guidelines to ISO 14044:2006. International Standard Organization (ISO), Geneve.

Index	Paragraph/ Figure/Table	Type of comment	Reviewer comment	Reviewer recommendation	Author of the LCA study response
Goal and	scope definition				
#1	Overall	te	and CO ₂ . Urea producers are said to be the single largest consumer of industrial CO ₂ . What are the consequences of investing in electrolysis- based or natural gas + CCS-based ammonia? Would if affect the supply of CO ₂ for urea production? Would the CO ₂ be supplied by other means (e.g., point source capture from other industrial emitters with conditioning and transport). Should it be included within the system boundaries of the		The demand for ammonia as shipping fuel will not affect the production of fertilizer, since none of th inputs to the production are constrained. But to make this clear to the reader, this is specified in the report.
ŧ2	Terminology (various)	te	consequential model? By-product: "Non- determining product". Not clear to the reader what a non-determining	It is relevant to specify market trends since electricity, for example, is a market with a decreasing trend since 2008 in Europe.	The terminology is explained more precisely and is introduced throughout the report.

Table 1: Detailed comments (ed: editorial; te: technical)

			product is.		Moreover, it is specified in
			Consequential		section 3.1 weather the
			modelling: "This implies		market for electricity is
			that the product is		increasing or decreasing.
			produced by new		2 2
			capacity (if the market		
			trend is increasing).". Or		
			by extending the lifetime		
			of existing capacity if the		
			market trend is		
			decreasing?		
			iLUC: "as the upstream		
			life cycle consequences		
			of the land use" \rightarrow "as		
			the upstream life cycle		
			consequences of a		
			change in land use"?		
#3	Executive summary to	e		Include a reference to the method documentation.	This is included, see
	– scope and		cycle impact assessment		section 1.10.
	boundary		method"		
	Executive summary to	e		Include an authoritative reference showing the evidence that	
	– scope and				modelled production
	boundary			1	method for H2 from
					natural gas is based on
					discussions with project
			a change in demand will	*	partners, while the
			be met by new capacity,		production method for
				1 /	VLSFO is based on the
				discarded. It will likely be recovered and used for fertilizer,	
				thereby displacing marginal sulphur production.	section 4.2.
			autothermal reforming		
			(ATR), while VLSFO is		It is true that sulphur is not
			assumed to be produced		landfilled. Sulphur is as
			through		by-product from several
			desulphurisation."		production systems and

					there is produced more sulphur than there is a demand for. Thus, sulphur is sent to stockpiling, where it is stored until it is used in the future. This is consistent with the modelling of sulphur in Ecoinvent. Thus, the model is updated with a process for stockpiling of sulphur,
#4	Executive summary	te	"For ammonia to fulfil		which replaced the landfill of sulphur. The relevant project
	– function and functional unit (p.8)		its function as a shipping fuel, ammonia needs to be ignited by a pilot fuel. It is assumed that VLSFO is the closest match to a pilot fuel in this LCA study. Thus, for the functional unit of 1 MJ shipping fuel, VLSFO accounts for 9.6% of the total fuel energy of 1 MJ ammonia".	is needed is precisely because ammonia is used. It is a consequence of it. Hence, the 9.6% energy-equivalent should be additional to the 1 MJ of ammonia fuel supplied, and not included in the functional unit, even though it might not make a significant difference (especially given all the uncertainty).	partners have confirmed that both the pilot fuel and the ammonia is used to fuel the ship. Thus, as the functional unit is 1 MJ of shipping fuel, the share of pilot fuel is included in the functional unit.
#5	Executive summary – sensitivity analysis (p.10)			If anything, cautious and conservative assumptions should be adopted. Optimistic assumptions may be misrepresented. The assumption of 0.253 g N_2O emitted per MJ of ammonia has the potential to change the conclusions.	both that the 0.02 and 0.06

				If data exist that points towards low N ₂ O emissions, please cite accordingly.	the second being the highest value for N2O/kWh assumed to be acceptable for the design of ammonia engines according to this report by Maersk Mc-Kinney Moller Center ¹ .
#6	Executive summary – G&S (Table 1.1)		electricity mix is applied,	For clarity, it may be worth highlighting the fact that changes in capacity building are captured, to differentiate that from short-term responses.	This is added, see section 3.1.1.1.
#7	Executive summary – G&S (p. 17)	te	"The LCIA results can be recalculated to 1 TEUkm using a conversion factor of	Annex 4 shows that the load factor of 85% is preserved when the ship is powered with Ammonia. Would not the load factor increase if you reduce the load by 912 TEU (i.e., presumably, one would lose 912 TEU from the 2,250 empty TEUs)?	
#8	Executive summary – G&S (p. 18, Fig. 1.1)		modelled as SMR, since	Inconsistent assumptions: the H2 used to desulphurize fuel oil is produced by SMR while the H2 used for producing Nh3 is produced by ATR. Please justify. If we keep this rationale, we might choose SMR for providing the H2 to produce the NH3.	The model is changed, so all H2 to desulphurization is produced using ATR without CCS. Note, that the H2 will not be produced from a facility with CCS, since a project partner has stated that CO2 is rarely stored, more often it is used in fertilizer

¹ https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx

					production or the food &
					beverage industry, or
					simply vented to the
					atmosphere. Thus, CCS is
					specifically required for
					H2 for blue ammonia due
					to decarbonization targets
					for shipping fuel.
					Therefore, even though the
					CO2 for H2 for
					desulphurization is
					captured and potentially
					utilized, it will most likely
					be emitted within a very
					short timeframe, which is
					equal to the CO2 being
					emitted at the facility.
					Thus, this is included in
					the modelling of H2 from
					ATR for desulphurization.
#9	Executive summary	te		Show the market value of the near-pure oxygen from the	The oxygen from ASU is
	– G&S (p. 19,		L L L L L L L L L L L L L L L L L L L	ASU.	utilized on the market,
	Figure 1.2)		1	There might be needed a clarification on Figs 1.2 and 1.3 on	while the oxygen from
			t	he sensitivity of energy needed to maintain -33°C. Boil off	electrolysis is not
				of NH3 is marginal. Check consistency with statement in	(Krishnan et al. $(2024)^2$
				Section 1.10.	and Hydrogen Insight ³).
					Note, that for the default
					scenario, nitrogen is the
					primary product from the
					ASU, thus, with oxygen
					being utilized, this changes

² <u>https://www.sciencedirect.com/science/article/pii/S0360319923053405</u>

³ https://www.hydrogeninsight.com/production/analysis-what-should-companies-do-with-the-vast-amounts-of-oxygen-produced-by-green-hydrogen-projects-/2-1-1654419 and https://www.hydrogeninsight.com/industrial/additional-revenue-stream-by-product-oxygen-from-300mw-green-hydrogen-project-sold-in-long-term-deal/2-1-1382545

					the modelling of ASU for blue ammonia, since the oxygen will be a by- product which can substitute the production of primary oxygen. Typically, oxygen is the primary product from ASU facilities, thus, when oxygen is a by-product in the foreground, it will substitute its primary production at another ASU facility. Moreover, it is modelled the other way around for the sensitivity analysis in section 8.13.2.4, where oxygen is assumed to be the primary
#10	Executive summary – G&S (p. 21,	te		Clarify why EXIOBASE is shown several times since EXIOBASE is not explicitly mentioned as a background	product, and nitrogen is the by-product. It is specified throughout the report, when either
	Figure 1.4)			database up to this point (only ecoinvent has been mentioned so far (p.8)).	EXIOBASE and Ecoinvent is used and the EXIOBASE logo is removed from the system boundary figures to limit confusion.
#11	Executive summary – G&S (p. 22)		when results are not valid anymore are when the activities surrounding the fuel production	It appears that the size of the change in demand may also invalidate these results (e.g., 1 MJ of additional shipping fuel vs. 1 EJ). A change in demand large enough may potentially restructure the supply chains entirely. Maybe a few words should be added about the importance of the scale of the change in demand and the assumption of	The aim of the study is to model the long-term effect of the marginal demand. Thus, the modelling will not change if the functional unit is 1 EJ

			montrat managements	linearity.	instead of 1 MJ.
			market responses to	inearity.	
			changes in supply and		The current modelling is
			demand are different		based on discussions with
			compared to what is		the project partners and
			modelled in the LCA."		their expectations to the
					market changes based on
					the current
					decarbonization targets
					and how these targets are
					expected to affect the
					demand for ammonia as
					shipping fuel. Thus, the
					model will change, e.g., if
					the decarbonization targets
					are altered or if the
					expected market changes
					go in another direction.
					This is made clear to the
					reader in the report.
#12	Executive summary	te	"The LCA study is based	At this point it is still unclear if and how EXIOBASE is	The section describing the
	– G&S (p. 22)		on foreground data from	used, although this is made clear in the next section. Change	used background database
			literature from 2001-	the sequence, please.	is moved up, so it is now
			2023, the most recent		section 1.6, thus, it comes
			available data from the		before temporal and
			project partners, and the		geographical scope.
			Ecoinvent v.3.8 database	,	
			which includes data from		
			approx. 1990-2021. The		
			background database,		
			EXIOBASE 3.3.16		
			hybrid version, includes		
			data for 2011. Yet, due to		
			the importance of		
			electricity for ammonia		
			production, the LCI data		
L			production, the LCI data		

			for the marginal		
			electricity mixes in		
			EXIOBASE has been		
			updated with a time-		
			series from 2017-2021		
			based on data from IEA		
			(2023b), i.e., changes in		
			electricity supply from		
			different technologies in		
			this timeframe.		
			Moreover, the data for		
			the production of wind		
			and solar electricity has		
			also been updated with		
			LCI data from Bonou et		
			al. (2016) and		
			Frischknecht et al.		
			(2020). This updated LC		
			data is further described		
			in section 3.1."		
#13	Section 1.8	te	"it has a much more	As the authors list the advantages of an MRIO database of a	
	Background		complete geographical		EXIOBASE/MRIO is
	databases (p. 22)		scope than any process	(e.g., lower technology resolution).	added to section 1.6
			database". If the authors		(which was previously
			list the advantages of an		1.8).
			MRIO database of a		
			process-based one, they		
			should also list its		
			disadvantages, in my		
			opinion (e.g., lower		
			technology resolution).		
#14	Section 1.8	te	"Hence, in general, a	While this is true, it leads the reader to think that it equates	The text is adjusted
	Background		very large part of the	to a large part of impacts being excluded, which is not	accordingly.
	databases (p. 24)		economy is excluded	necessarily the case (see <u>Steubing et al. 2022</u>). Hence,	
			from Ecoinvent." while	please make this sentence more neutral or provide a	

				a family a second of the state	
			this is true, it leads the	reference supporting this claim.	
			reader to think that it		
			equates to a large part of		
			impacts being left out.		
			This is not necessarily		
			the case (see Steubing et		
			al. 2022). Hence, I		
			suggest making this		
			sentence a bit more		
			neutral or providing a		
			publication supporting		
			this claim.		
#15	Section 1.10 Data	te	"Thus, the provided	It appears that there aren't any large-scale production units	The text is modified in
	sources and quality		values are	for green hydrogen and ammonia. Hence, we suggest	both section 1.10 and 9.2.
	(p. 24)		average/typical values	requalifying the data quality from "high" to something	
	* ·		for these two plant	along the lines of "as high as possible given the	
				technology's maturity level" regarding green hydrogen and	
			project partners based on		
			their most recent		
			available data. This data		
			is therefore deemed to be		
			of high quality."		
#15	Section 1.11 Life	te	"The weighting module	The ISO standards exclude the use of weighting in	As weighting is not
	cycle impact		is documented in	comparative assertions. Please clarify that Stepwise was	applied in the LCA study,
	assessment method		Weidema (2009)."	used at the midpoint level.	any reference to the
					weighting module in
					Stepwise is removed.
					Moreover, it is made clear,
					that Stepwise is used at the
					midpoint.
#16	Section 1.1 Life		"Yet, these impact	This is a poor justification, given that ecoinvent does	EXIOBASE is used due to
#10	cycle impact		categories are not	include these elementary flows. Please justify the use of	its 0% cut-off criterion.
	assessment method		included in this report,	EXIOBASE for completeness, despite the incomplete	However, it is a limitation
	assessment method		since EXIOBASE does		· · · · · · · · · · · · · · · · · · ·
				coverage of impacts that its use entails.	of the study, that
			not include important		EXIOBASE does not

			elementary flows"	If hydrogen leaks are modelled, considering the warming potential of hydrogen emissions to air may be scientifically advised. Sand et al (2023) ⁴ suggest a GWP100a factor of 11.6 kg CO ₂ -eq./kg H ₂ . Hydrogen leads to warming via the destruction of ozone in the upper atmospheric layer while also extending the lifetime of methane by delaying its oxidation to CO ₂ . This was tested in Section 7.1 but please address it here too. It may be worth noting that ammonia-exhaust emissions would be detrimental to marine and aquatic species through water acidification and eutrophication. Acidification and eutrophication are included, but not freshwater/marine ecotoxicity.	include elementary flows which are of high importance for the excluded impact categories. This is made clear in the report. The default results are updated so GWP100 of hydrogen is included. The sensitivity analysis therefore tests the influence of a 5% hydrogen slip. It is specified that EXIOBASE does not include emissions of hydrogen, thus, GWP100 for hydrogen is only related to the foreground system.
#17	Section 1.12 Time- dependent emission factors for CO2 emissions	te	"[] the aim of limiting temperature rise to 2°C as stated in the Paris Agreement.".	Change to "[] the aim of limiting temperature rise to 2°C by 2100 compared to pre-industrial levels, as stated in the Paris Agreement.".	The text is modified to include this suggestion.
#18	Section 3.1.1.1 Marginal electricity mix	te	"Furthermore, as grid electricity is one of the important inputs for ammonia produced with H2 from ATR, []": I understand the opposite from "To produce ammonia with H2 from	Include a paragraph that explains why past time-series are used as opposed to future ones, e.g., 2021-2030	This is addressed in the section and there is a reference to the sensitivity analysis, which tests this.

⁴ https://www.nature.com/articles/s43247-023-00857-8

			ATR, the electricity inputs are modelled as electricity from grid throughout the life cycle. This is done, since the input of electricity to natural gas-based ammonia production is minor []".		
#19	Section 3.1.1.2 Electricity from wind	te		maximum output regardless of the wind speed. This relation is usually given by the turbine's power curve. This should be made clearer.	The text is modified to explain the chosen approach in a better way.
#20	Section 3.1.1.3 Electricity from solar	te		storing the produced electricity seems incorrect. In practice, this will probably lead to an accelerated degradation of the electrolyzer as well as a poor load factor.	Battery storage is too expensive, thus, hydrogen storage is used instead, as described in section 4.1.1.1.
#21	Section 3.1 Attributional modelling of electricity	te		should be added as to why.	

⁵ https://www.aib-net.org/facts/european-residual-mix

#22	Section 3.2 Attributional modelling of natural gas		with a LHV of 36 MJ/Nm ³ (hence, about 48.8 MJ/kg).	In Ecoinvent v3.8 cut off ⁶ , the LHV for natural gas, high pressure, is set to 39 MJ/m3 and the density is not specified. Yet, 39 MJ/m3 and 0.8 kg/m3 provides an LHV of 48.75 MJ/kg. Thus, in order to be consistent with the 39 MJ/m3 from Ecoinvent v3.8, the density of natural gas is changed to 0.790 kg/m3, thus resulting in a LHV of 49.5 MJ/kg, which is applied for natural gas in both the consequential and attributional model.
#23	Section 3.5.1.4 Attributional modelling of transport by pipeline	te	CO_2 over 1 km (hence, the CAPEX should be scaled accordingly).	The LCI data in section 3.5.1.3 and 3.5.1.4 is adjusted so it fits with the default slip for gases of 0.3% applied throughout the study.
#24	Section 3.7.1.3 Consequential modelling of concrete	te	14% of cement mass-wise seems a little weak. The weakest concrete recipe in ecoinvent (i.e., 20 MPa) has 18.7% mass- wise of Portland cement (i.e., Portland cement contains 95% by mass of clinker), and up to 35% for the strong ones (i.e., 50 MPa). Please double-check the concrete recipe used here.	Based on the Ecoinvent v3.8, which we have available, there is around

⁶ https://ecoquery.ecoinvent.org/3.8/cutoff/dataset/14395/documentation

					The influence of the concrete recipe has been tested: If the share of cement is increased to 28%, the GWP results change with less than 0.0002% and the results for terrestrial ecotoxicity (which is one of the impact categories most affected by the material inputs to CAPEX) change with less than 0.0001%. Since the changes in results are minor, the current recipe is kept.
#25		te	from Bertagni et al. (2023) relates to the slip	A molecule of hydrogen is smaller (in volume) than a molecule of methane. Hence, while we agree to apply the same rate to all gases, please add a sentence to acknowledge the limitation of such assumption.	This is added to the report, e.g., see several of the sub-
#26	Table 4.1	te		8kg of O ₂ should be produced per kg H ₂ . Please include this in the table. Clarify whether the oxygen is liquefied and used later (i.e., allocation)?	The oxygen output from the electrolysis process is added to table 4.1. The output is modelled as being emitted to air, since Krishnan et al. (2024) ⁷

⁷ https://www.sciencedirect.com/science/article/pii/S0360319923053405

			states that oxygen from electrolyser operators is currently vented into the atmosphere, thus supporting the current modelling. This is further supported by these two articles from Hydrogen Insight ⁸
#27	Table 4.1	te	25.5 kg H ₂ O per kg H ₂ is high. The stoichiometry requires 9 A project partner has kg H ₂ O/kg H ₂ , and industry reports and literature indicate a few kilograms more for cooling and cleaning purposes (i.e., 12-14 kg H ₂ O/kg H ₂ in total). Please check this figure. included the upstream water usage. This is corrected, so the applied input is 12.5 kg water/kg H2.
#28	Table 4.2	te	Where is the compression considered? A PEM electrolyzer will usually output at 25-30 bar. A storage unit would probably operate at 250-700 bar. I see an input of electricity, but it is not clear whether this corresponds to compression, and if so, it is not clear how it has been calculated.This comment has been discussed with the relevant project partners. They state that there aren't many actual examples on hydrogen storage, but for the current storage solutions the compression is <100 bar. But the partners also acknowledge that there is no set or standard pressure for this. The partners also explain that the chosen storage

⁸ <u>https://www.hydrogeninsight.com/production/analysis-what-should-companies-do-with-the-vast-amounts-of-oxygen-produced-by-green-hydrogen-projects-/2-1-1654419</u> and <u>https://www.hydrogeninsight.com/industrial/additional-revenue-stream-by-product-oxygen-from-300mw-green-hydrogen-project-sold-in-long-term-deal/2-1-1382545</u>

 1	
	pressure for a hydrogen
	plant linked directly to an
	ammonia plant will often
	only require storage for 8-
	12 hours, thus, the chosen
	storage pressure will
	mostly depend on the costs
	of storage at a certain
	pressure. Hydrogen stored
	for other purposes requires
	much longer storage times
	and can also face
	limitations on space, like
	when transporting
	hydrogen by truck. That's
	where hydrogen is stored
	at >250 bar.
	The energy data for
	hydrogen storage is
	obtained from Andersen
	and Grönkvist (2019),
	which has the following
	data: 1, 1.2, and 1.6
	kWh/kg H2 for 100, 200
	and 700 bar, respectively,
	for large-scale storage of
	hydrogen. Andersen and
	Grönkvist (2019) also
	states, that 100 bar
	requires large storage
	volumes and thereby high
	operating costs, while the
	source also states that 700
	bar is often used for truck

				storage and not stationary storage. Moreover, the
				source describes that there
				is an underground steel
				cylinder in Sweden used
				for hydrogen storage
				which operates with a
				pressure of 200 bar. Yet,
				underground storage may
				not be applicable in all
				scenarios.
				Based on this, the applied
				value of 1.6 kWh/kg H2 is
				kept, since it can be seen
				as a "worst case" estimate
				for the hydrogen storage process. This is also made
				clear in the report.
				clear in the report.
#29	Section 4.1.1.1	te	We cannot find the LCI for the electrolyzer, and related	This comment has been
-	Hydrogen from			discussed with the relevant
	electrolysis			project partners and they
	5			have not been able to
			(i.e., Pt and Ir loading) and the lifetime assumed are the two	provide any information
			most interesting aspects as they usually drive the GHG	on this.
			emissions of such installation.	
				Moreover, as the
				electrolyser is assumed to
				be part of the ammonia
				plant, there is no specific
				LCI data applied for the
				CAPEX activity for
				electrolyser. Thus, none of
				these parameters are
				considered in the study.

				This is a limitation of the study, however, when taking the small contribution from CAPEX activities into account, the specific information about the electrolyser is expected to have a minor influence on the results.
#30	Section 4.1.1.2.1 Carbon capture and storage	ammonia production plants typically increases the energy intensity by 3-7% for a 90-95% capture rate"	Antonini et al. (2021)9 find the impact of adding CCS to an ATR unit is very limited because of the absence of an external furnace. Note however that the numbers in Antonini et al. are based on a numerical simulation. We cannot find figure for CO2/tNH3 emitted from ATR based H2/NH3. A high value of 99% CO2 capture could be used, which means that the figure needs to include some CO2 leakage as well. (this will not significantly impact the overall conclusion, pending gas exploration source and methane leakage), but it should be mentioned.	First part: This comment has been discussed with the relevant project partners. They state that all SMR and ATR facilities, which are designed to produce hydrogen for ammonia production, has a CO2 capture plant, since the ammonia synthesis reactor requires pure hydrogen and nitrogen. But the partners acknowledge that the CO2 is rarely stored, more often it is used in fertilizer production or the food & beverage industry, or simply vented to the atmosphere. Yet, since CCS is specifically required for blue ammonia if this fuel should meet the decarbonization targets for

⁹ https://pubs.rsc.org/en/content/articlelanding/2020/se/d0se00222d

				shipping fuel, the CCS is kept in the model, since the LCA study models new capacity. Second part: Table 4.3 shows that 9.49 t CO2 is sent to CCS per t H2 produced. And since 0.18 t H2 is required per t NH3, this means that there is sent 9.49*0.18=1.7 t CO2 to CCS per t NH3. Since 90% of the CO2 is captured, 0.17 t CO2 is emitted to air per t NH3. Yet, table 4.3 is missing a 0.3% slip of CO2, which is added and the input to
#31	Section 4.1.1.4 Nitrogen production for natural gas- based ammonia	te	A marketable product that can easily be stored (i.e., liquid oxygen) is probably not vented out to the atmosphere.	CCS is adjusted slightly. As described for comment #9, the model is changed, since oxygen from ASU is utilized on the market. Note, that for the default scenario, nitrogen is the primary product from the ASU, thus, with oxygen being utilized, this changes the modelling of ASU for blue ammonia, since the oxygen will be a by- product which can substitute the production

		of primary oxygen. Moreover, it is modelled the other way around for the sensitivity analysis in section 8.13.2.4, where oxygen is assumed to be the primary product.
#32	Section 4.4 Fuel combustion and ship parameters	The N ₂ O emissions factor is assumed to be the same for diesel and ammonia engines. As sensitivity tests show, it is a critical parameter. However, the value used, 0.02 g N ₂ O/kWh, does not seem to represent a standard value for diesel ships ($0.03g/kWh$, according to ¹⁰), but is also much lower than the target value for NH ₃ ships used by the Maersk Mc-Kinney Moller Center working group on the topic (i.e., $0.06g/kWh$) ¹¹ . The report only says that "a project partner" gives this value for diesel ships and assumes it would be the same for NH ₃ ships. It would be good to argue why this unidentified partner has more credible data than what is publicly available (and published by Maersk Mc-Kinney Moller Center, presumably affiliated with A.P. Moller Maersk A/S, one of the commissioners of the present study). Given the importance of the parameter, we suggest the authors reconsider the data source for one that may be more transparent, to increase the study results/credibility.
#33	Table 6.1	Both wind- and solar-based fuels have a GWP of 12.6 gCO2/kg NH3. This might be due to regulation 2023/1185, but it is unclear if the figure complies with the ISO standards.It is made explicitly clear, that the attributional results are RED II compliant and not ISO 14040/44 compliant throughout the report.

¹⁰ https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx
¹¹ https://cms.zerocarbonshipping.com/media/uploads/documents/Ammonia-emissions-reduction-position-paper_v4.pdf

#34	Table 6.9	"In the studies by Liu et	The difference cannot be explained by the Haber-Bosch	The results for Liu et al.
		al. (2020) and	being run on grid electricity since these results describe the	(2020) and DECHEMA
			electrolysis-based NH ₃ case. Hence, this factor-15	(2022) are under column
			difference can only come from the ASU process, which	"carbon footprint of
		is run on 'green'	seems unlikely. The authors should try to pinpoint more	'green' electricity is 0" in
			precisely the root of such a difference. Maybe the other	table 6.9. For these
		footprint of zero, while	studies add local energy storage for autonomous H2	studies, it is not all
			production or account for a shorter electrolyzer lifetime?	processes which run on
		Haber-Bosch process	× •	green electricity. For Liu
		stem from grid electricity	,	et al. (2020), both the ASU
		mix."		and Haber-Bosch process
				is based on grid electricity.
				For DECHEMA (2020),
				all processes – except for
				electrolysis – are run on
				grid electricity. This is
				also described in the
				comment section in table
				6.9. Lastly, neither Liu et
				al. (2020) or DECHEMA
				(2020) include any
				impacts from H2 storage,
				buildings, machinery etc.
#35	Figure 7.3 to 7.27		Setting the y-axis to zero would be more accurate. In some	This comment is
			cases, the variation seems large, but it is, in fact, in	implemented were
			comparison to the absolute total.	applicable.

Comments to second iteration of the LCA report

We are generally satisfied with the way in which you addressed our 35 comments. However, there are 5 comments to which we would like further clarification/change:

- #4: it must be clear that one of the alternatives being compared is not just ammonia but an ammonia-blend. This need to be made explicit throughout the report.

Reply: In both the introduction, executive summary, and interpretation and conclusion, the share of VLSFO in ammonia is mentioned in the first paragraph. Moreover, all legends to figures mention the share of VLSFO where relevant, and the same goes for all tables. Lastly, the tables used to define the terms used in the report now include the share of VLSFO for ammonia fuel.

- #29: it is unfortunate that no data on critical parameters exist or is made available by the project partners, which is recognized as a limitation of the study. Please report on this limitation. Reply: This limitation is mentioned in both chapter 9 and section 10.1

- #32: we insist that an "optimistic" value should not be taken as the default value and instead be tested in the sensitivity analysis. Please swap the two values (0.06 as the default value and 0.02 in the sensitivity analysis).

Reply: We have followed up with the relevant partners to check whether the 0.02 g N2O/kWh of ammonia is still the development target for the engine. The project partners state that 0.02 was a bit optimistic, however, 0.04 g N2O/kWh is achievable based on the current engine data available from engine tests. Thus, the default value is changed from 0.02 to 0.04 while the sensitivity analysis still applies the 0.06 value. This means that all GWP results have been updated in the report along with the sensitivity analysis focusing of changes in GWP results.

- #33: please state that it only makes sense to compare attributional results to the REDII and consequential results cannot be compared with either.

Reply: This is specified in the executive summary, introduction, section 1.3, as well as interpretation and conclusion (section 10.2).

- #34: we insist that the authors should try to justify the large difference with published results, which can be 15- to 20-fold. The reasons identified by the authors do not hold, as they make the results lower, not larger.

Reply: The detected reasons for differences between the studies have been added as a new column in both table 6.9 and 6.10. Moreover, the reasons for the differences have been described in more detail in section 6.4.