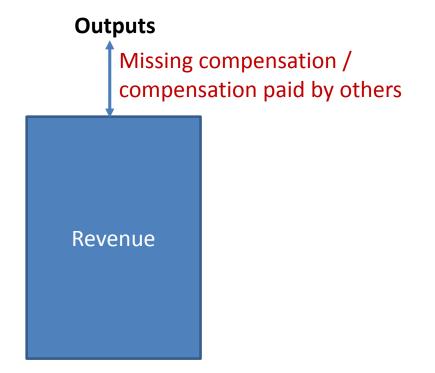


Arla Foods Environmental Profit and Loss Account (E P&L)

- Organisational LCA with Monetarisation

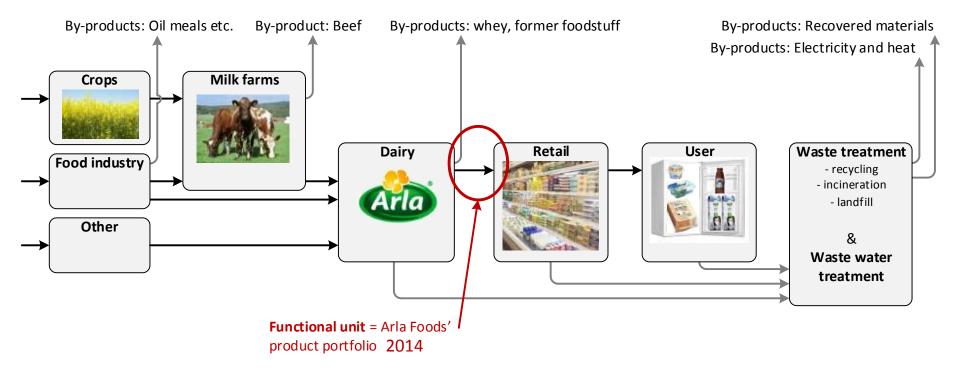
Jannick H Schmidt and Anna Flysjö
Nantes 24th May 2016

2.-0 LCA consultants Skibbrogade 5, 1, 9000 Aalborg, Denmark www.lca-net.com


What is an E P&L?

 Intention: complement the company's financial Profit & Loss account with monetarised external benefits/costs of the life cycle of the company's product portfolio.

Internal costs/benefits



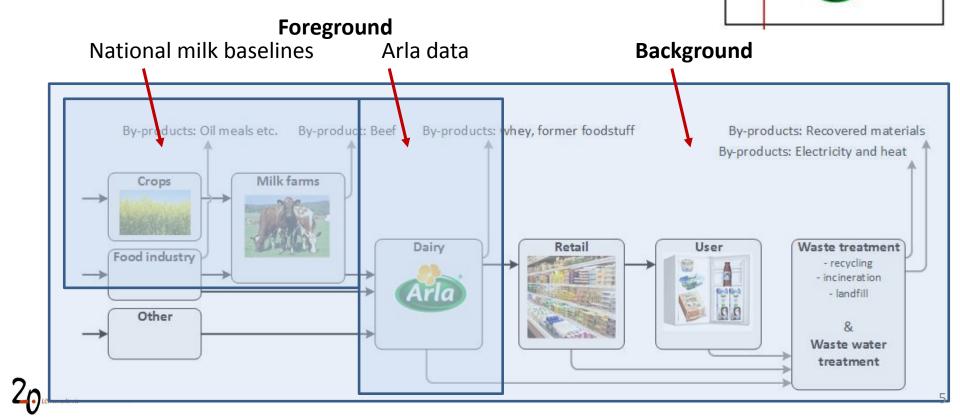
Value of externalities = loss of productivity + loss of welfare Wellbeing cannot exceed loss of productivity because of budget constraint (on average)

What is an E P&L?

- Similarity with LCA: E P&L same as organizational LCA (e.g. GHG protocol, the Commission, UNEP/SETAC) with monetarisation as weighting.
- Functional unit: Product portfolio: upstream, direct and downstream.

About Arla

- One of the Worlds largest dairy companies
- Revenue: 10.8 billion (~4% of Danish GDP)
- Production: 9 million tonne dairy products (62% fresh, 14% whey, 8% cheese, 17% other)



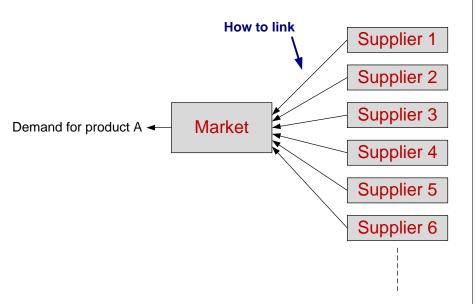
Data overview

- Foreground data:
 - Arla data: physical + economic data
 - National milk baselines: DE, DK, SE, UK
- Background data: Process LCA + IO (own studies, ecoinvent, FORWAST)

Life cycle assessment of milk - National

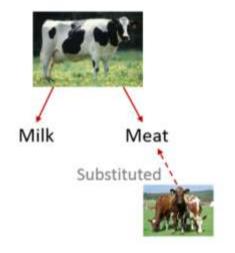
baselines for Germany, Denmark, Sweden and United Kingdom 1990 and 2012

Metods


- Overview
- Life cycle assessment (LCA): ISO 14040/44
- Two approaches: Consequential incl. iLUC + Attributional
- Results in physical units:
 - GHG emissions
 - Biodiversity
 - Eutrophication
 - Resources etc.
- Results in monetarised units:
 - Stepwise
 - Danish guidelines
 - Trucost

Methods

- Consequential incl. iLUC + Attributional


1) Suppliers: unconstrained versus average

CLCA: Only unconstrained

ALCA: Average of all

2) By-products: substitution versus allocation

CLCA: Substitution

ALCA: Allocation

Methods

Consequential incl. iLUC + Attributional

- Why two methods?
- Consequential
 - Follows ISO14044
 - Scientific approach: Causeeffect based and preservation of properties
- Attributional
 - Follows IDF guideline
 - Normative approach: non-real processes, constrained processes are included, and mass balances are not respected

Two LCA methods, two sets of results, answers to two different questions

Consequential LCA gives an answer on the question:

"what is the impact of a choice?" This choice could be to
buy or produce a product, or to implement an
improvement option. Consequential LCA is relevant when
Arla wants to know the impacts of their actions.

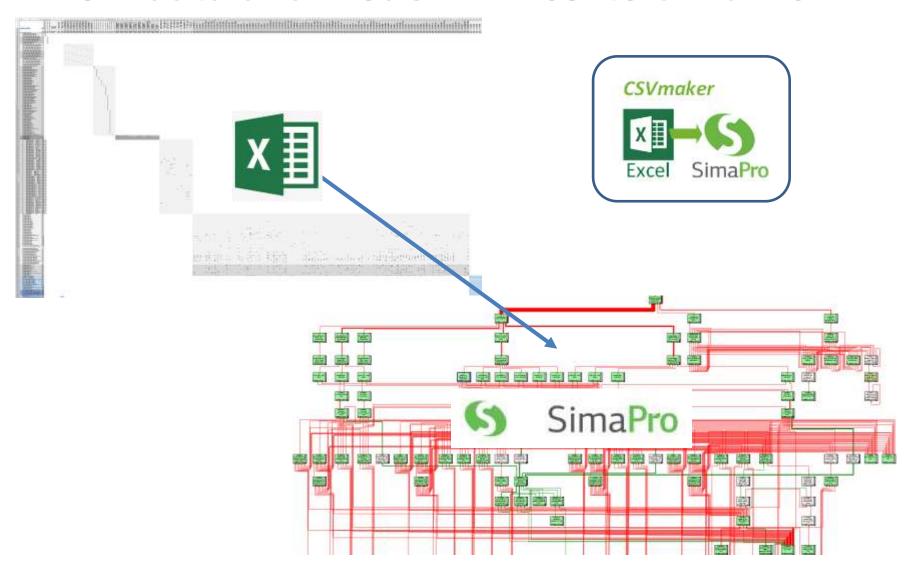
Attributional LCA gives an answer on the question: "what are the impacts from that part of the life cycle that it has been decided to include based on the normative allocation and cut-off rules?" Attributional LCA is relevant when Arla wants to report their impacts according to consensus-based guidelines/standards.

Monetarisation

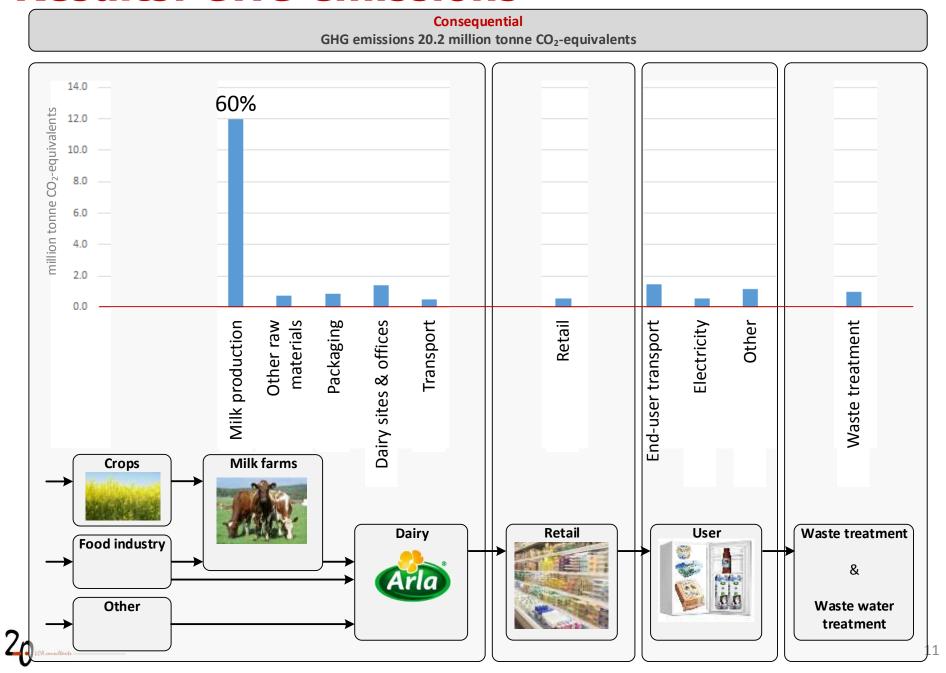
- 3 methods

http://lca-net.com/services-and-solutions/impact-assessment-option-full-monetarisation/

- Why 3 methods? Large differences and uncertainties
- The used methods


Emissions	Stepwise (EUR2003/ kg)	Danish Guidelines (EUR2013/kg) Danish EPA: (Andersen and Brandt 2014) Danish Energy Agency (2014) Low Average High			Trucost (EUR2011/kg) (Høst-Madsen, Damgaaard, Szeler, et al. 2014) Global Denmark	
Ammonia (NH ₃)	10.2	20.9	20.9	20.9	0.632	0.400
Carbon dioxide (CO2-eq)	0.0830	0.00737	0.00737	0.00737	0.0860	0.0860
Carbon monoxide (CO)	0.317	0	0	0.0013		
Lead	145	14.0 4	95*	424ª		
Nitrogen oxides (NO _x)	9.69	5.23	15.4	15.4	1.30	0.577
NMVOC	0.246				0.875	0.374
Particulates < 2.5um (PM _{2.5})	67.6	18.9	27.4	44.2		
Particulates < 10um (PM ₁₀)	36.2	NY NY		16/6	12.5	7.75
Sulphur dioxide (SO ₂)	5.42	12.3	35.4	55.6	0.972	1.53

Stepwise: ~1000 more


Results

- From data and model in Excel to SimaPro

Results: GHG emissions

Results

- Monetarised

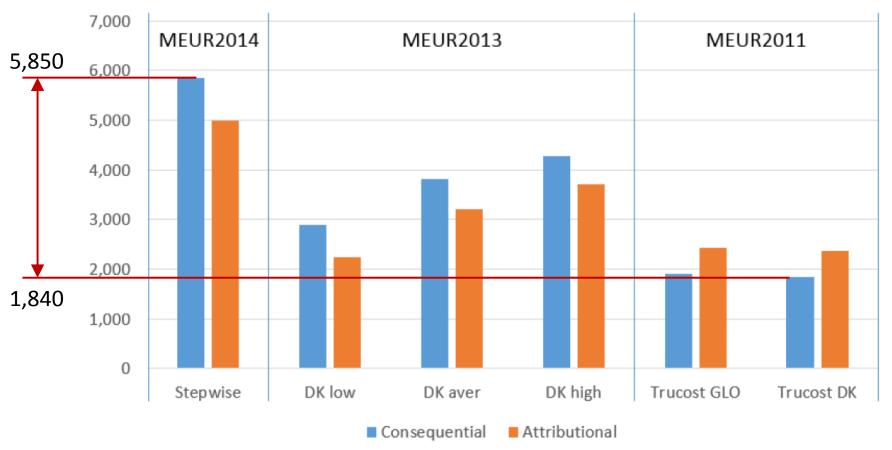
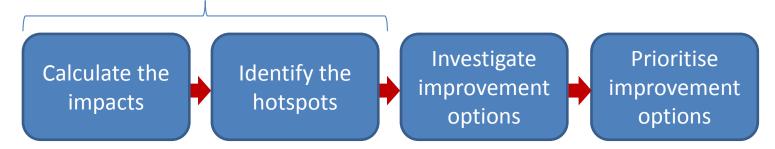



FIGURE 8.1: COMPARISON OF MONETARISED RESULTS USING ALTERNATIVE VALUATION METHODS.

2014

Conclusions and next steps

- Complete study: Everything about Arla is in the model...
- E P&L = Full impact ⇒ good tool for prioritising
 - All footprints gathered in one!
 - Indicator (externalities/revenue) good for benchmarking
 - So far so good:

- Outlook
 - New standards for Sustainability reporting
 - Benchmarking companies, sectors, countries...
 - Update of Stepwise: http://lca-net.com/clubs/monetarisation/
- 2n Include social impacts: http://lca-net.com/clubs/social-lca/