BICC, The Westin Resort Nusa Dua, Bali 25 - 27 April 2018

Life cycle assessment of palm oil

PT SMART pilot study on GHG and biodiversity mitigation options

Jannick Schmidt¹, Haskarlianus Pasang², Rifki T Noor², Imanuddin Utoro² ¹ 2.-0 LCA consultants. Email: Jannick.schmidt@lca-net.com ² Sinarmas Agribusiness and Food

COPE

Background and purpose

PT SMART pilot study \bullet

- LCA study for Sungai Rungau palm oil mill in Central Kalimantan
- Purpose
 - Overview of environmental impact and hotspots
 - Compare with industry average
 - Investigate achievable reductions in GHG emissions and igodolbiodiversity
- **Intended** use \bullet
 - Communication
 - Knowledge on improvement options \bullet

Methods

- Modelled system
- Functional unit 1 kg RBD oil
- Year: 2016
- Impacts: 16
 Focus on: GHG and biodiversity

Methods

C

- Field emissions
 - N_2O : IPCC (2006) tier 2 + detailed N-balance
 - Peat CO₂: IPCC (2014) + extensive literature review
- POME emissions
 - UNFCCC CDM methodology
- GHG indicator
 - IPCC (2013) Global warming potential (GWP100)
 - Time-dependent GWP: Land use changes and nature conservation
- Biodiversity indicator
 - Effect: Direct + indirect land use changes
 - Species richness
 - Relative difference between current land use and marginal alternative

Direct and indirect land use changes

COPE

• Effect of 1 ha additional rapeseed field somewhere?

Nature conservation

Effect of 1 ha Nature conservation

The choice:

- Cultivate oil palm, or
- Nature conservation

Oil palm plantation in Indonesia - with nature in land bank

Somewhere else – at the frontier

Emissions from LUC

• CO_2 emissions = 44/12 x ($C_{stock, before} - C_{stock, after}$)

Temporal effects of emissions

- Conservation areas may be lost
- ➡ effect per year

- Effect of 1 year = postponing LUC
- Net $CO_2 = 0$
- GWP100 = >0

(See Schmidt et al. 2015)

Oil palm plantation in Indonesia - with nature in land bank

Avoided direct land use changes (dLUC)

ICSPE enhancing sustainable oil paim

Data

Key data	Unit	PT SMART	Industry average
			Malaysia and Indonesia
Estate			
FFB yield (mature)	ton/ha*year	26.1	19.3
Share of oil palm on peat	%	0%	18%
Land bank set-aside as HCV nature conservation	%	7.5%	0%
Carbon stock of HCV nature conservation	ton C/ha	213	n.a.
(below and above ground)			
N-fertiliser	kg N/ha*year	112	178
P-fertiliser	kg P ₂ O ₅ /ha*year	75	88
K-fertiliser	kg K ₂ O/ha*year	29	34
Palm oil mill			
Oil extraction rate (OER)	%	22.2%	20.3%
Kernel extraction rate (KER)	%	5.6%	5.2%
POME treated with biogas capture	%	0%	5%
COD conc. of raw POME	ppm	98,000	79,000
Refinery			
Electricity	kWh/ton RBD oil	12	27
Coal	GJ/ton RBD oil	0.37	0.32
PFAD to CPO	%	5.2%	4.6%

Data

COPE

- Carbon stock in nature conservation
- Detailed field survey July 2017
- 25 plots
- Biomass calculation approach (Hairiah et al. 2011)

		Average stock of
No	Carbon sources	carbon
		(Ton C/ha)
1	Trees	109.90
2	Understorey Vegetation	0.0434
3	Litter	0.46
4	Soil	9.05
5	Below ground biomass	93.88
otal	200	213.35

PT SMART compared with industry average - GHG emissions

COPE

Mitigation options: biogas capture

Mitigation options: nature conservation

Conclusions

COPE

- PT SMART Sungai Rungau
 - Significantly better performance than industry average
 - 7.5% HCV reduces GHG 1% and biodiversity 14%

Mitigation options

- Biogas capture: up to 57% GHG reduction potential
- HCV: Increase from 7.5% to 30%
 - 3% GHG reduction potential
 - 43% biodiversity reduction potential

• Model

- Fully parameterised model
- Can be implemented for all PT SMART's palm oil mill supply bases
- Option for calculating annual updates of the results

BICC, The Westin Resort Nusa Dua, Bali 25 - 27 April 2018

Thank You

Jannick Schmidt 2.-0 LCA consultants Phone: (+45) 3332 2822 E-mail: jannick.schmidt@lca-net.com

