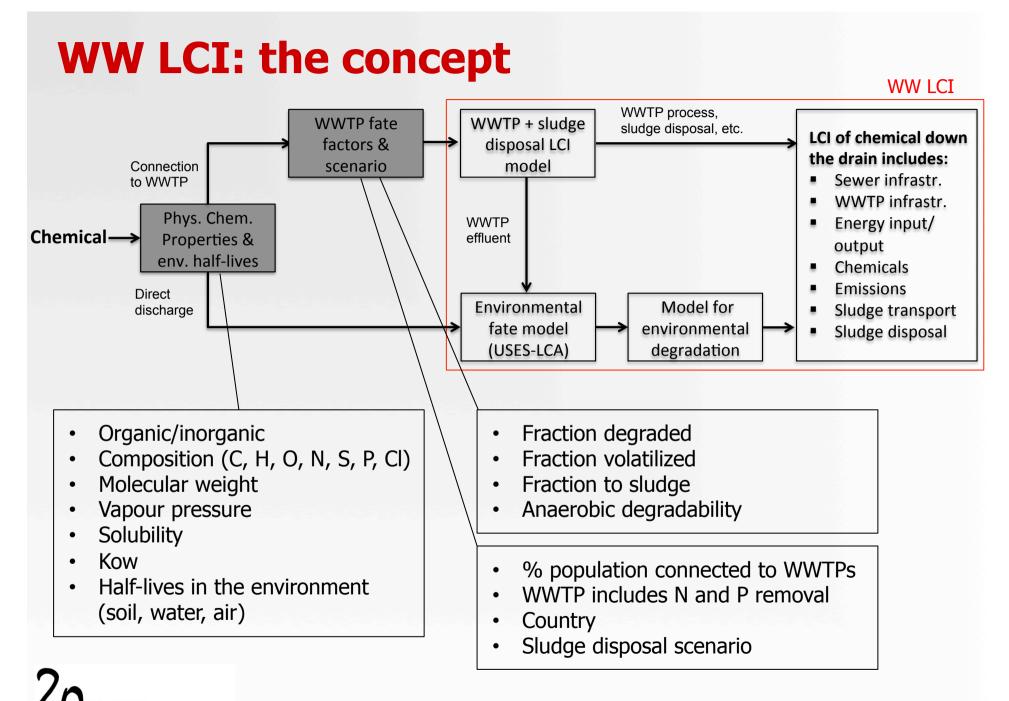
SETAC Europe 27th Annual Meeting, Brussels, 7-11 May 2017

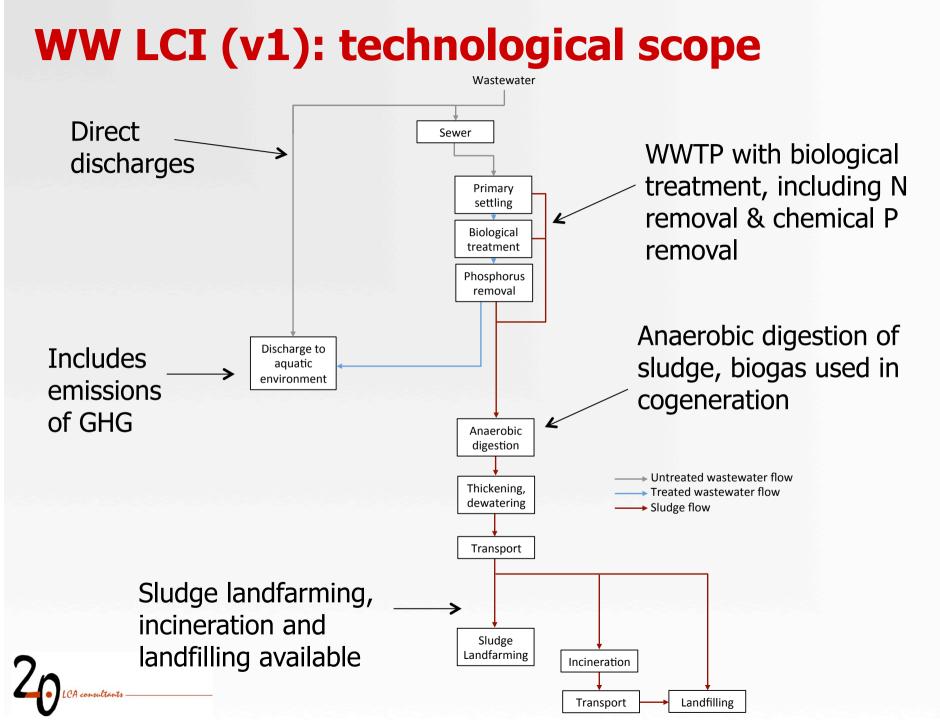
A second-generation life cycle inventory model for chemicals discharged to wastewater

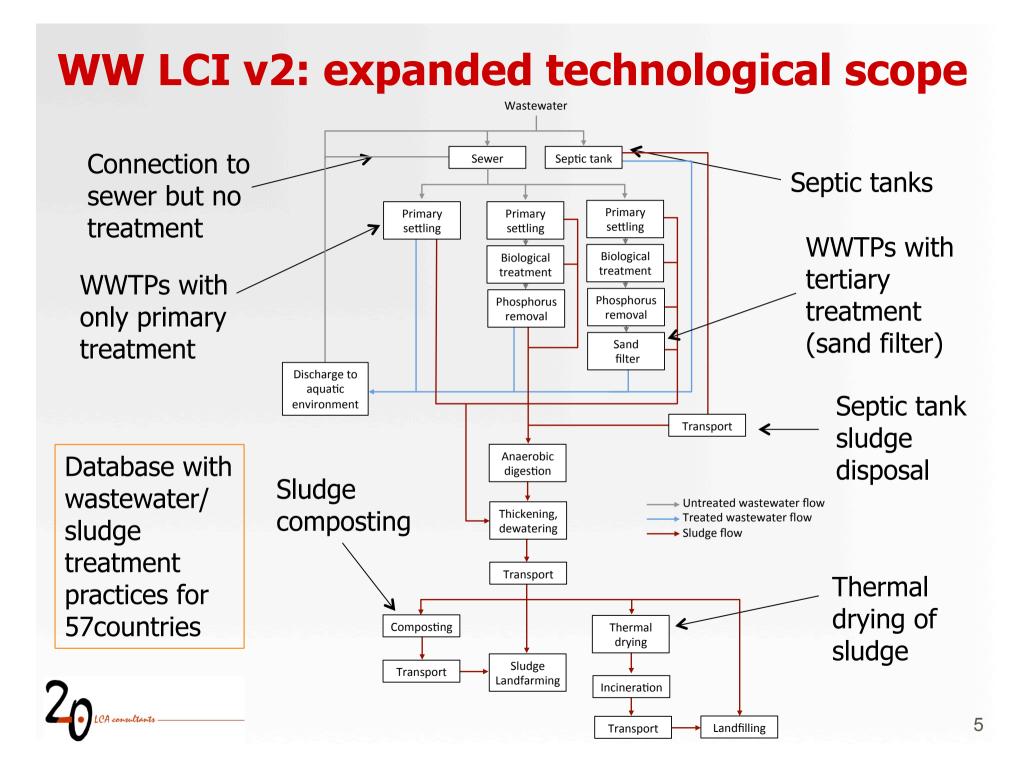
Pradip P. Kalbar, Technical University of Denmark & C-USE, Indian Institute of Technology Bombay

Morten Birkved, Technical University of Denmark

Ivan Muñoz, 2.-0 LCA consultants






Background and aim

- There is a need to better assess the disposal of chemicals via wastewater in LCA taking into account differences in:
 - Specific behaviour of individual chemicals
 - Wastewater collection and treatment levels in different countries
 - Wastewater treatment technologies
 - Sludge disposal practices in different countries
- We recently developed WW LCI, a model that calculates chemical-specific LCIs of chemicals in wastewater¹
- We present WW LCI v2, where we expand the scope of its predecessor, including features from another model, SewageLCI²

¹ Muñoz I, Otte N, Van Hoof G, Rigarlsford G. (2016) A model and tool to calculate life cycle inventories of chemicals discharged down the drain. Int J Life Cycle Assess, DOI: 10.1007/s11367-016-1189-3 ² Birkved M, Dijkman TJ (2012) SewageLCI 1.0, an inventory model to estimate chemical specific emissions via sewage treatment systems. 6th SETAC World Congress, Berlin 20-24 May 2012.

WW LCI v2: new processes

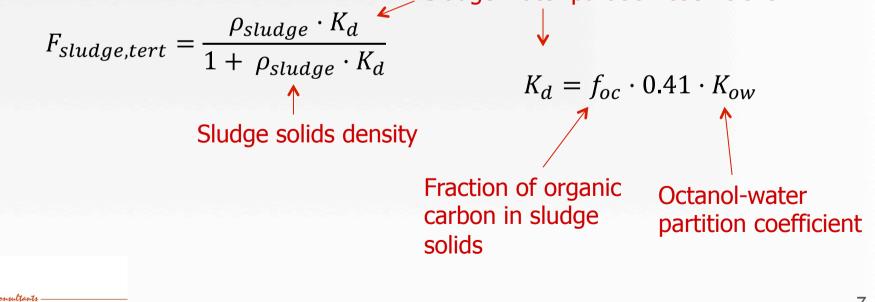
Septic tanks

- Production and installation of septic tank
- Degradation/removal of chemicals in wastewater:

 $F_{deg,septic} = 0.3 \cdot F_{deg,WWTP}$ $F_{sludge,septic} = 0.3 \cdot F_{sludge,WWTP}$

Transport of sludge (3% dry mass) to WWTP

WWTPs with primary treatment only


- Lower energy use and land occupation
- No anaerobic digestion of sludge
- Degradation/removal of chemicals in wastewater:

 \rightarrow As in septic tanks

WW LCI v2: new processes

- WWTPs with tertiary treatment
 - We only include sand filtration
 - Additional energy use, cleaning chemicals and land occupation
 - Removal of chemicals based on chemical-specific sorption to sludge:

Sludge-water partition coefficient

WW LCI v2: new processes

Thermal drying of sludge

- Pre-treatment for incineration
- Electricity and heat demand to evaporate excess water
- Chemical content assumed unaltered

Sludge composting

- Optional before application to agricultural soil
- Open composting only
- Inputs include composting plant and energy use
- Complete mass balance:

Mass balance for sludge composting, all amounts in kg

	Input			Output								
Chemical in sludge	Chemical	02	Total input	Water to air	CO2	CH ₄	N ₂ O	N ₂	NH ₃	NOx	Chemical in compost	Total output
DTPMP (persistent)	1	0	1	0	0	0	0	0	0	0	1	1
TAED (degradable)	1	0.13	1.13	0.58	0.18	0.00172	0.00089	0.00089	0.028	0.013	0.33	1.13

WW LCI v2: country database

Statistics on wastewater treatment (in %):

- Connection to sewer
 - Without treatment
 - With treatment primary
 - With treatment secondary
 - With treatment tertiary
- Connection to independent collection
 - With treatment
 - Without treatment

Statistics on sludge disposal (in %):

- Composting
- Landfarming
- Landfilling
- Incineration

Europe	Austria, Bosnia Herzegovina, Belgium, Bulgaria, Switzerland, Cyprus, Czech Republic, Germany, Denmark, Estonia, Spain, Finland, France, United Kingdom, Greece, Croatia, Hungary, Ireland, Iceland Italy, Lithuania, Luxembourg, Latvia, FYR of Macedonia, Malta, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Sweden, Slovenia, Slovakia, Turkey, Ukraine, Montenegro	
America	Brazil, Canada, Chile, Mexico, Peru, United states	
Asia Pacific	Australia, China, Indonesia, India, Iran, Japan, Republic of Korea, Malaysia, Russia, Saudi Arabia, Thailand, Taiwan	
Africa	Tanzania, South Africa	

WW LCI v2: key features of the Excel tool

- All calculations in a single Excel file: WW LCI.xlsx
- 30 chemicals can be assessed at a time, separately or as a mixture
- Entirely parameterized, all values can be changed by the user
- Resulting LCIs use ecoinvent 3 nomenclature
- WW LCI does not include impact assessment calculations
- LCIs can be exported as CSV files to LCA software: SimaPro

WW LCI v2 in Excel

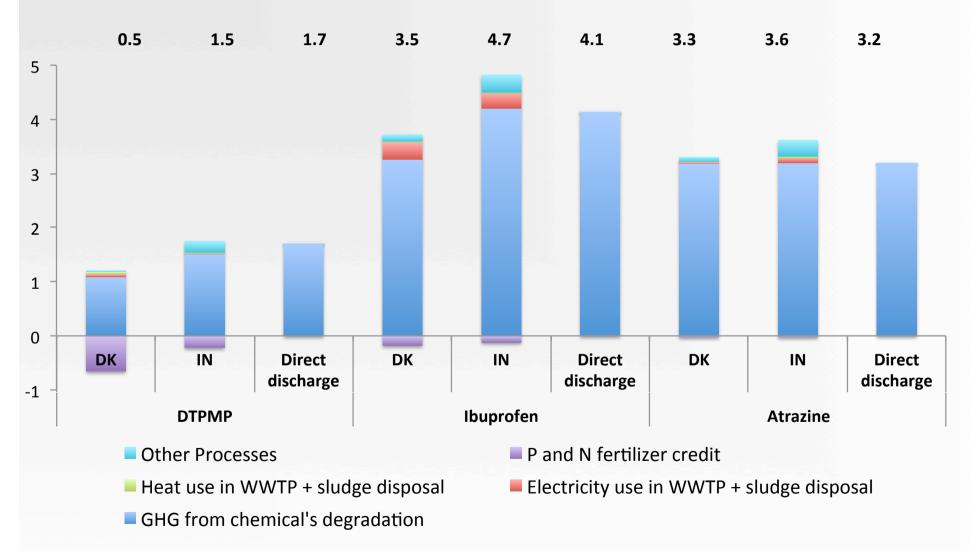
20 LCA consultants -

A		B C I	DEFGH	I I J K	L M	N	0	Р	Q		S T	U V	W	X	Y Z	AA	—
ario data										Automated err	or flags						
ry					HU	-				No errors							
e of country da				1-1-1 (0/)	Database 85%		4000/			[
	C	Connection to urban waster			8%		100%										
			stewater collecting system		57%		0% 100%										
	-		stewater collecting system vastewater treatment - pri		2%		0%										
water treatme	ant –		vastewater treatment - pri		30%		100%										
rio T	<u> </u>	1	1	ondary treatment (%)			100 %				6						14
	A	В	C		D			E		F	G	Н				J	K
	1											Phosphore	nic				
	i.											acid, bis	2-				
	i.											bis(phosph	ono .				
	1	L	.CI for WWTP+sludge	disposal+environmental	degradation			Diclofer	nac	Ibuprofen	Atrazine	methyl)am		cetaminoph	en wa	ater	0
scenario	i.																
	1											ethyl ami					
t removal in-												methyl					
condary trea				Product in wastewater ((kg)			1		1	1	1		1		1	0
al mixture				Methanol (kg)				0		0	0.002936072	0		0		0	Ö
armixture				FeCl3 (kg)				ŏ		ő	0.002000012	ŏ		ŏ		0	ŏ
cal-specific													20			<u> </u>	
ar-specific				Electricity (kWh)				0.001492		0.311109633	0.005228534	0.0184229		0.00002244			0
1				Heat (MJ)				4 003630	1005	n h£7479499	0.00525724	0.290878		0.0000564		526878	0
Name				WWTP infrastructure (-13	8.78414E-	13 :	3.37175E-1	3 3.3717	75E-13	0
- 1				Sewer infrastructure ()							-11	8.0444E-	11	8.0444E-1	8.044	4E-11	0
ac				Polyvinylchloride, bulk							292	0.0168072		0.01680729		307292	Ő
an						_											
•			Wastewater	Polyethylene, high der	CS						313	0.0156953		0.01569531		395313	0
, onic acid, b			treatment	Injection moulding (GL				$c \rho i$			504	0.0325026		0.03250260	4 0.0325	502604	0
inophen			treatment	Excavation, hydraulic		V					813	0.0065078	13	0.00650781	3 0.0065	507813	0
inopitett .				Sand (GLO) market for								2.45		2.45	2	45	0
				Gravel, crushed (GLO							5	0.45937		0.459375		9375	ŏ
••••••											3						
				Transformation, from u							9	6.85E-0		6.85E-09		E-09	0
				Transformation, to ind		-					9	6.85E-0	9	6.85E-09	6.85	E-09	0
				Occupation, industrial							07	1.7125E-0)7	1.7125E-07	1.712	5E-07	0
				Building, hall, steel cor							9	6.85E-0	3	6.85E-09	6.85	E-09	0
				Sand, at mine (kg)							035	0.0000040		0.00000403		004035	0
											865						
				Sodium hydroxide, 50								0.0000018		0.00000186		001865	0
			Sludge transport	transport to sludge dis							534	98.181941		0.11206485		0	0
				Compost plant infrastr							-11	3.5581E-1	10 1	9.40404E-1	3	0	0
				Electricity (kWh)					•		-06	9.38943E-	05	2.48162E-0	7	0	0
			Sludge composting	Diesel (MJ)							708	0.0068048	66	1.79852E-0	5	0	0
											124	0.9055858		0.0023934		0	ŏ
Normal Vi				Transport to landfarmi	_			\mathbf{c} .		aP	134 -06 07		00				
Norman V	S			process-specific burde		\sim			\mathbf{n}		-06	0		0		0	0
				process-specific burde							07	0		0		0	0
1				process-specific burde							-09	0		0		0	0
	+			electricity from waste,							-06	Ő		Ő		0	Ő
											-06			0		0	ŏ
				heat from waste, at mu							-06						
	_	From		iron (III) chloride, 40%								0		0		0	0
				cement, unspecified, a							-09	0		0		0	0
1	Q	technosphere		disposal, cement, hydra	ated, 0% water, to res	idual mat	terial landfill	3.45168E	E-09	3.54511E-07	4.10658E-09	0		0		0	0
	4		Sludge landfilling	transport, freight, rail (th				2.43482E		2.50073E-05	2.89679E-07	ŏ		ŏ		0	ŏ
			orauge ranuming										07				
	-			transport, lorry 28t (tkm				4.37396E		2.02653E-05	2.47243E-07	4.71299E-	07	1.33057E-0		0	0
				natural gas, burned in in		NOx >10	OKW (MJ)	9.46898E		0.000972528	1.12656E-05	0		0		0	0
				electricity, low voltage, a	at grid (kWh)			0.000348	3772	0.033594053	0.000390275	4.2569E-0)5	1.2018E-07	,	0	0
	_					dulating	(M.D.	1.55995E		0.000499891	6.34915E-06	2.10682E-		5.94795E-0		0	Ő
	_			llight fuel oil burned in h													
	_			light fuel oil, burned in b													·····
	_		VTP input USESI	natural das burned in h	oiler modulating >10	OKW (M.I	1	2 10503E	-05	0.000674566	8 56771E-06	2 843E-0	5	8 02632E-0	R	n	, Ő
			WTP input / USESL		oiler modulating >10	OKW (M.I	1		-05	0.000674566		2 843E-0			R		

WW LCI v2 applied to three chemicals

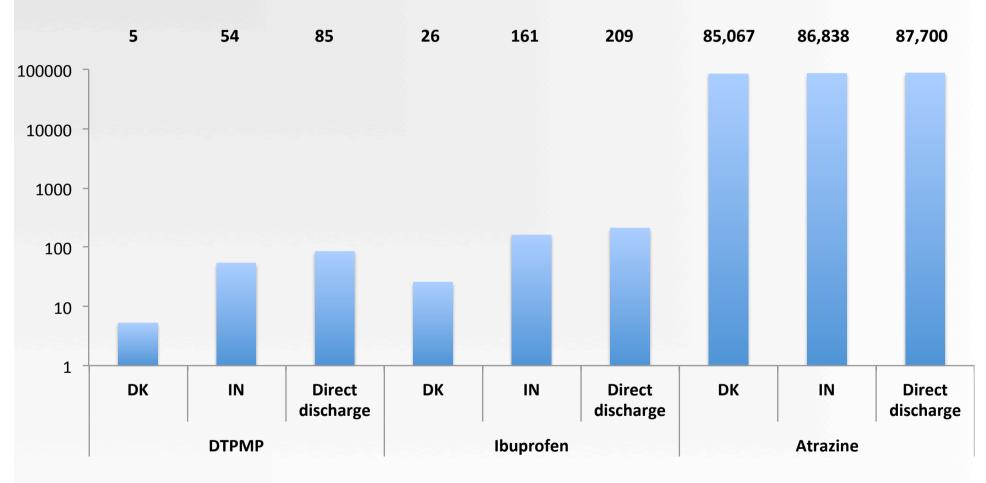
Chemicals

Name	Typical use	Key features	Removal in WWTP (with secondary treatment ¹)
Diethylenetriamine penta(methylene phosphonic acid) (DTPMP)	In detergents	Poorly degradable, contains N and P	0% degraded, 85% to sludge
Atrazine	Pesticide	Poorly degradable, contains N	1% degraded, 2% to sludge
Ibuprofen	Pharmaceutical	Degradable	72% degraded, 1% to sludge
1 Estimated with the fate w			

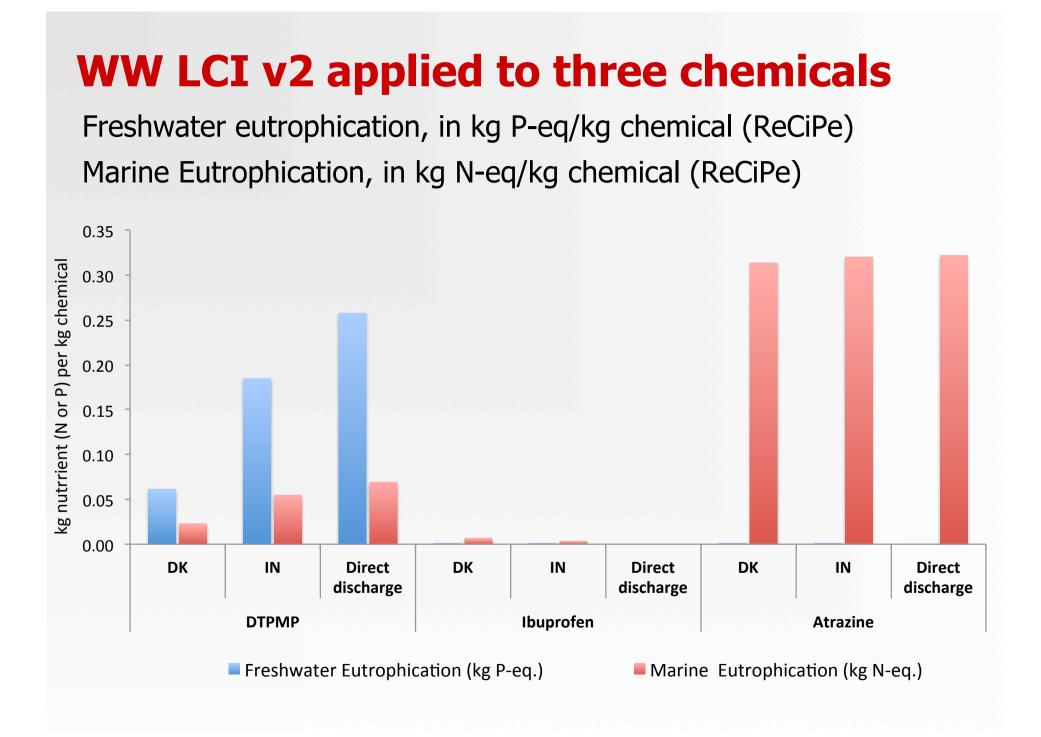

¹ Estimated with the fate model Simpletreat

Country data

		Denmark (DK)	India (IN)				
	Connection to sewer						
	Without treatment	0%	0%				
	Primary treatment	2%	0%				
Wastewater	Secondary treatment	3%	21%				
treatment scenario	Tertiary treatment	84%	0%				
u caument Scenario	Connection to independent collection						
	With treatment - septic tank	11%	39%				
	Without treatment	0%	39%				
	Composting	6%	0%				
Sludge disposal	Landfarming	50%	100%				
scenario	Landfilling	0%	0%				
	Incineration	44%	0%				


WW LCI v2 applied to three chemicals

GHG emissions, in kg CO_2 -eq/kg chemical (IPCC 2013)



WW LCI v2 applied to three chemicals

Freshwater ecotoxicity, in CTU-eq/kg chemical (USEtox)

(Log scale)

Conclusions & options for improvement

- Improvement in modelling the end of life for chemical substances
- Still some limitations:
 - Data-demanding
 - Complete flow analysis only for C, N, P, S and Cl
 - Metals not yet supported
 - No uncertainty quantification
 - Import of data sets only available for SimaPro so far
 - Septic tank sludge scenario is optimistic for developing countries
 - Tertiary treatment includes only sand filter
 - Country database can be expanded

Thank you!

More info: http://lca-net.com/projects/show/wastewater-lci-initiative/

WW LCI References:

Kalbar P, Muñoz I, Birkved M. *WW LCI v2: a secondgeneration inventory model for chemicals discharged to wastewater*. Submitted to the International Journal of Life Cycle Assessment

Muñoz I, Otte N, Van Hoof G, Rigarlsford G. *A model and tool to calculate life cycle inventories of chemicals discharged down the drain.* International Journal of Life Cycle Assessment. DOI: 10.1007/s11367-016-1189-3

