SETAC Europe 28th Annual Meeting, Rome, 13-17 May 2018

Social footprint of a deposit-refund system for packaging waste in Spain

Ivan Muñoz¹, Bo P. Weidema¹, Alba Bala², Pere Fullana²

¹ 2.-0 LCA consultants, Denmark

² UNESCO Chair in Life Cycle and Climate Change, ESCI-UPF, Spain

Contents

- The social footprint
- Introduction of a DSR in Spain
- Case study results
- Conclusions

- Existing social LCA methods hampered by:
 - Excessive data requirement
 - Lack of social/economic impact pathways
 - Excessive focus on site-specific data
- The Social Footprint (SF) is the equity-weighted share of the wellbeing and productivity gap that can be ascribed to a product or service
 - A complete top-down measure of all social, biophysical and economic externalities
 - Low data requirement for screening purposes
 - Uniform monetary valuation

Productivity impact (PI)

SF = PI-IR

Production and consumption

internal costs

Global

Income redistribution (IR)

IR = Equity-weighted, purchase-power corrected, life cycle costs

$$Utility = \left(\frac{averageIncome}{subgroupIncome}\right)^{\wedge} \delta$$

 δ = elasticity of marginal utility of income

Activity	Value added (VA)	VA, equity- weighted
Apparel production, FR	1€	0.2 €
Apparel production, IN	1€	7.4€

PI = Equity-weighted, purchase-power corrected, well-being and productivity gap

= Difference between current GDP and potential GDP in the absence of externalities

- US GDP per capita as starting point
- Correction factors to account for externalities in US:

57,600 USD₂₀₁₆ + 17.6% + 2.5% + 1% + 20% + 35%
$$\approx$$
 115,000 USD₂₀₁₆
Household Trade production barriers Unemployment health in education impact

- A country-specific PI is calculated
- Distributed over the industries of each country in proportion to value added and utility-weighted:

Activity	PI _{PPP}	PI _{PPP} , equity-weighted
Raw milk production, SE	5 . 9 €/h	4.9 €/h
Raw milk production, IN	18.4 €/h	219 €/h

Case study: A DRS in Spain

- In a deposit-refund system (DRS) consumers pay a deposit when purchasing a product; the deposit is refunded when the packaging is returned to a shop
- The goal is not to reuse, but to recycle materials
- Ongoing debate in several regions in Spain on the suitability of such a system in order to increase stagnant recycling rates

Proposed DRS affects only beverages < 3 L, except dairy

Case study: scope

Two scenarios under study:

A: current situation for packaging waste management (Green Dot System, GDS)

B: Introduction of a DRS achieving 90% return rate, coexisting with GDS for the rest of packaging waste

 Functional unit is the total amount of packaging waste managed in Spain in 2014:
 2.5 million tonnes A

2.5 million t collected1.7 million t recycled

B

1.4 million t 1.1 million t 2.0 million t recycled

Case study: Data

- Primary data used:
 - Waste balances for both scenarios
 - Operational data on current system (collection, transports, sorting, disposal of residues)
 - Theoretical dimensioning and costs of the DRS in Spain (manual/automatic collection, type of commercial establishments involved, transports, sorting activities, etc.)
 - Expected rebound effects on GDS (collection and sorting inefficiencies)

Case study: Data

- Background data used: Exiobase v3.3.10
 - Global, detailed Multi-regional Environmentally Extended Supply and Use/Input Output database
 - 43 countries + 5 RoW regions

- 164 economic sectors per country
- Extended by 2.-0 LCA consultants with IR and PI values
- Implemented in SimaPro:

Outputs to technosphere: Products and co-products		Unit
_64 Manufacture of rubber and plastic products (25) {ES} (linked)	544559	ton

Social issues	Subcompartment	Amount	Unit
Productivity impact, raw		5923.375	MEUR,PPP
Productivity impact, raw, utility-weighted		122.9795	MEUR,PPP
Utility-weighted value added (PPP), total		89.2279	MEUR,PPP

Case study: Results

SF in MEUR₂₀₁₁ PPP, utility-weighted

Scenario	IR	PI	SF = RI+IP
Α	181	-5,247	-5,066
В	-100	-2,413	-2,513

Social footprint: system B minus system A (Million Euro₂₀₁₁ PPP, utility-weighted)

Case study: Results

Conclusions

- In spite of higher recycling rates, the introduction of a DRS for beverage containers in Spain involves a higher social footprint than the current GDS
- Similar conclusions were drawn by parallel environmental and economic assessments
- The social footprint concept combined with Exiobase provides a powerful quantitative Life cycle-based sustainability screening
- Comprehensive assessments can be produced with much lower efforts than seen so far

Thank you!

- More info on social footprint: https://lca-net.com/clubs/social-lca/
 Weidema B P (2018) The social footprint—a practical approach to comprehensive and consistent social LCA. Int J Life Cycle Assess, 23(3):700-709
- More info on the DRS sustainability assessment:

https://www.esci.upf.edu/en/unesco-chair-in-life-cycle-and-climate-change/ariadna-study

